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INTRODUCTION

Two general types of inhibition mediate activity in neural systems: subtractive
inhibition, which sets a zero level for the computation, and multiplicative (nonlin-
ear) inhibition, which regulates the gain of the computation. We report a physical

realization of general nonlinear inhibition in its extreme form, known as winner-
take-all.

We have designed and fabricated a series of compact, completely functional
CMOS integrated circuits that realize the winner-take-all function, using the full
analog nature of the medium. This circuit has been used successfully as a component
in several VLSI sensory systems, that perform auditory localization (Lazzaro and
Mead, in press) and visual stereopsis (Mahowald and Delbruck, 1988). Winner-
take-all circuits with over 170 inputs function correctly in these sensory systems.

We have also modified this global winner-take-all circuit, realizing a circuit
that computes local nonlinear inhibition. The circuit allows multiple winners in
the network, and is well suited for use in systems that represent a feature space
topographically and that process several features in parallel. We have designed,
fabricated, and tested a CMOS integrated circuit that computes locally the winner-
take-all function of spatially ordered input.

THE WINNER-TAKE-ALL CIRCUIT

Figure 1 is a schematic diagram of the winner-take-all circuit. A single wire,
associated with the potential V;, computes the inhibition for the entire circuit; for
an n neuron circuit, this wire is O(n) long. To compute the global inhibition,
each neuron k contributes a current onto this common wire, using transistor T,.
To apply this global inhibition locally, each neuron responds to the common wire
voltage V., using transistor Ty,. This computation is continuous in time; no clocks
are used. The circuit exhibits no hysteresis, and operates with a time constant
related to the size of the largest input. The output representation of the circuit is
not binary; the winning output encodes the logarithm of its associated input.
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Figure 1 Schematic diagram of the winner-take-all circuit. Each neuron receives a unidirec-
tional current input [j; the output voltages V...V, represent the result of the winner-take-all
computation. If Iy = max(l;...I,), then Vi is a logarithmic function of I; if I; < I, then
V}- 22 0.

A static and dynamic analysis of the two-neuron circuit illustrates these system
properties. Figure 2 shows a schematic diagram of a two-neuron winner-take-all
circuit. To understand the behavior of the circuit, we first consider the input
condition Iy = Iy = I,;. Transistors T, and T}, have identical potentials at gate
and source, and are both sinking I,,; thus, the drain potentials V; and V; must be
equal. Transistors T3, and Ty, have identical source, drain, and gate potentials,
and therefore must sink the identical current I, = I, = I./2. In the subthreshold
region of operation, the equation I, = I, exp(V,/V,) describes transistors Tj, and
Ty,, where I, is a fabrication parameter, and V, = kT/qx. Likewise, the equation
I./2 = I,exp((Vin — V¢)/Vs,), where Vi, = Vi = V3, describes transistors T3, and
Ts,. Solving for Vi, (Im, I.) yields

I I,
Vi = Voln(—) + V, In(—). 1
m on(Io)+ on(2Io ()
Thus, for equal input currents, the circuit produces equal output voltages; this
behavior is desirable for a winner-take-all circuit. In addition, the output voltage
Vi logarithmically encodes the magnitude of the input current I,,.
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Figure 2 Schematic diagram of a two-neuron winner-take-all circuit.

The input condition I} = I, + 6;, Iz = I, illustrates the inhibitory action of the
circuit. Transistor T}, must sink é; more current than in the previous example; as a
result, the gate voltage of T;, rises. Transistors T}, and T}, share a common gate,
however; thus, T}, must also sink I, + §;. But only I, is present at the drain of
Ty,. To compensate, the drain voltage of T1,, V3, must decrease. For small §;s, the
Early effect serves to decrease the current through T3,, decreasing V3 linearly with
6;. For large §;s, Ty, must leave saturation, driving V3 to approximately 0 volts.
As desired, the output associated with the smaller input diminishes. For large §;s,
I, = 0, and I, = I.. The equation I, + §; = I, exp(V./V,) describes transistor
T1,, and the equation I, = I, exp((V1 — V;)/V,) describes transistor T3,. Solving for
Vi yields

In +6; I
Vi =V, In( "‘I’L £) + Vo In(32). (2)
0 (4]

The winning output encodes the logarithm of the associated input. The symmetrical
circuit topology ensures similar behavior for increases in I relative to I.

Equation 2 predicts the winning response of the circuit; a more complex ex-
pression, derived in Appendix A, predicts the losing and crossover response of the
circuit. Figure 3 is a plot of this analysis, fit to experimental data.
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Figure 3 Experimental data (circles) and theoretical statements (solid lines) for a two-neuron
winner-take-all circuit. Iy, the input current of the first neuron, is swept about the value of I, the

input current of the second neuron; neuron voltage outputs v; and V; are plotted versus normalized
input current.

Figure 4 shows the wide dynamic range and logarithmic properties of the circuit;
the experiment in Figure 3 is repeated for several values of I, ranging over four
orders of magnitude.
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Figure 4 The experiment of Figure 3 is repeated for several values of I,; experimental data of
output voltage response are plotted versus absolute input current on a log scale. The output voltage
Vi = V5 is highlighted with a circle for each experiment. The dashed line is a theoretical expression
confirming logarithmic behavior over four orders of magnitude (Equation 1).
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The conductance of transistors Tj, and 7}, determines the losing response of

the circuit. The Early voltage, V., is a measure of the conductance of a saturated
MOS transistor. The expression

vy
3L (3)

defines the Early voltage, where V; is the drain potential of a transistor, and L is the
channel length of a transistor. Thus, the width of the losing response of the circuit
depends on the channel length of transistors Ty, and T},. Figure 3 shows data for
a circuit where the channel length of transistors Ty, and Ty, is 13.5um. Figure 5
shows data for a circuit with a wider losing response; in this circuit, the channel

length for transistors Ty, and T, is 3um, the smallest allowable in the fabrication
technology used.
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Figure 5 Experimental data (circles) and theoretical statements (solid lines) for a two-neuron
winner-take-all circuit with a channel length for transistors 7y, and Ty, of 3 pm. The dotted lines
show the losing response for the circuit used in Figure 3, which has a channel length for transistors
T11 and T]_2 of 13.5 pm.

Increasing the channel length of transistors Ty, and T, narrows the losing
response of the circuit; alternatively, circuit modification also can narrow the losing
response. The circuit shown in Figure 6 approximately halves the width of the
original losing response, through source degeneration of transistors Ty, and Ty, by
the added diode-connected transistors I3, and T3,. Figure 7 shows experimental
data for this modified circuit.
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Figure 6 Schematic diagram of a two-neuron winner-take-all circuit, modified to produce a
narrower losing response.
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Figure 7 Experimental data (circles) and theoretical statements (solid lines) for a two-neuron
winner-take-all circuit, modified to produce a narrower losing response. The dotted lines show losing
response for the circuit used in Figure 4.



TIME RESPONSE OF THE WINNER-TAKE-ALL CIRCUIT

A good winner-take-all circuit should be stable, and should not exhibit damped
oscillations (“ringing”) in response to input changes. This section explores these
dynamic properties of our winner-take-all circuit, and predicts the temporal re-
sponse of the circuit. Figure 8 shows the two-neuron winner-take-all circuit, with
capacitances added to model dynamic behavior.
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Figure 8 Schematic diagram of a two-neuron winner-take-all circuit, with capacitances added
for dynamic analysis. C is a large MOS capacitor added to each neuron for smoothing; C, models
the parasitic capacitance contributed by the gates of T, and T},, the drains of T3, and T5,, and
the interconnect.

Appendix B shows a small-signal analysis of this circuit. The transfer function
for the circuit has real poles, and thus the circuit is stable and does not ring, if
I. > 4I(C./C), where I} =~ I = I. Figure 9 compares this bound with experimental
data.

If I, > 4I(C./C), the circuit exhibits first-order behavior. The time constant
CV,/I sets the dynamics of the winning neuron, where V, = kT'/qx ~ 40 mV. The
time constant CV,/I sets the dynamics of the losing neuron, where V, ~ 50 V.
Figure 10 compares these predictions with experimental data, for several variants
of the winner-take-all circuit.
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Figure 9 Experimental data (circles) and theoretical statements (solid line) for a two-neuron
winner-take-all circuit, showing the smallest I., for a given I, necessary for a first-order response to
a small-signal step input.
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Figure 10 Experimental data (symbols) and theoretical statements (solid line) for a two-neuron
winner-take-all circuit, showing the time constant of the first-order response to a small-signal step
input. The winning response (filled circles) and losing response (triangles) of a winner-take-all
circuit with the static response of Figure 3 are shown; the time constants differ by several orders of
magnitude. Losing responses for winner-take-all circuits with the static responses shown in Figure 5
(squares) and Figure 7 (open circles) are also shown, demonstrating the effect of the width of static
response on dynamic behavior.



THE LOCAL NONLINEAR INHIBITION CIRCUIT

The winner-take-all circuit in Figure 1, as previously explained, locates the
largest input to the circuit. Figure 11 shows this behavior. Figure 11(a) is the
spatial input to a winner-take-all circuit with 16 neurons, with input 8 much higher
than all other inputs. Figure 11(b) shows the circuit response to this input; only
neuron 8 has significant response.

Certain applications require a gentler form of nonlinear inhibition. Sometimes,
a circuit that can represent multiple intensity scales is necessary. Without circuit
modification, the winner-take-all circuit in Figure 1 can perform this task. Appendix
C explains this mode of operation.

Other applications require a local winner-take-all computation, with each win-
ner having influence over only a limited spatial area. Figure 11(c) shows the desired
computation. As in Figure 11(b), neuron 8 has the largest response in the circuit.
However, neuron 8 suppresses the output of only nearby neurons; neurons far from
neuron 8 have significant responses, encoding their input signals.

I, Vi Vi
0 2 4 6 810121416 0246 810121416 024 6 8 101214 1
k (Position) k (Position) k (Position)
a b c

Figure 11 Comparison of idealized winner-take-all spatial response and the desired local
winner-take-all response. The horizontal axis of each plot represents spatial position in a 16-neuron
network. (a) The plot shows a spatial impulse function, used as input to compare the two concepts.
The vertical axis shows the input current to each neuron, with Iz > I x3. (b) The plot shows the
winner-take-all response. (c) The plot shows the local winner-take-all response, show neuron voltage
output on the vertical axis.

Figure 12 shows a circuit that computes the local winner-take-all function. The
circuit is identical to the original winner-take-all circuit, except that each neuron
connects to its nearest neighbors with a nonlinear resistor circuit (Mead, in press).
Each resistor conducts a current I, in response to a voltage AV across it, where

I, = I, tanh(AV/(2V,)). (4)

I,, the saturating current of the resistor, is a controllable parameter. The current
source I, present in the original winner-take-all circuit, is distributed between the
resistors in the local winner-take-all circuit.

9
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Figure 12 Schematic diagram of a section of the local winner-take-all circuit. Each neuron 2
receives a unidirectional current input Ij; the output voltages V; represent the result of the local
winner-take-all computation.

To understand the operation of the local winner-take-all circuit, we consider the
circuit response to a spatial impulse, defined as Iy > I, where I = Iz. I > Ij
and Iy > Ix41, 50 V, is much larger than V., _, and V,, +1» and the resistor circuits
connecting neuron k with neuron k¥ — 1 and neuron k + 1 saturate. Each resistor
sinks I; current when saturated; transistor T3, thus conducts 2I; + I, current.
In the subthreshold region of operation, the equation Iy = I, exp(V,, /V,) describes
transistor 71, , and the equation 21, + I, = I, exp((Vx — V¢, )/V,) describes transistor
Ty,. Solving for V} yields

Vi = VoIn((21, + L)/1,) + V, In(Ix/L,). (5)

As in the original winner-take-all circuit, the output of a winning neuron encodes
the logarithm of that neuron’s associated input.

As mentioned, the resistor circuit connecting neuron k£ with neuron k—1 sinks I,
current. The current sources I, associated with neurons k—1, k—2, ... must supply
this current. If the current source I, for neuron k — 1 supplies part of this current,
the transistor T3, , carries no current, and the neuron output V;_; approaches zero.
Similar reasoning applies to neurons k+1, k+2, ... . In this way, a winning neuron
inhibits its neighboring neurons.

This inhibitory action does not extend throughout the network. Neuron & needs
only I, current from neurons k¥ — 1, k — 2, .... Thus, neurons sufficiently distant
from neuron k maintain the service of their current source I, and the outputs of

10



these distant neurons can be active. Since, for a spatial impulse, all neurons &k — 1,
k —2, ... have an equal input current I, all distant neurons have the equal output

Viek = Voln(I/I,) + V, In(I/L,). (6)

Similar reasoning applies for neurons k+1,k+2, ....

The relative values of I; and I, determine the spatial extent of the inhibitory
action. Figure 13 shows the spatial impulse response of the local winner-take-all
circuit, for different settings of I,/I.

k (Position)

Figure 138 Experimental data showing the spatial impulse response of the local winner-take-all
circuit, for values of I,/I. ranging over a factor of 12.7. Wider inhibitory responses correspond to
larger ratios. For clarity, the plots are vertically displaced in 0.25 volt increments.

CONCLUSIONS

The circuits described in this paper use the full analog nature of MOS devices
to realize an interesting class of neural computations efficiently. The circuits exploit
the physics of the medium in many ways. The winner-take-all circuit uses a single
wire to compute and communicate inhibition for the entire circuit. Transistor Ty,
in the winner-take-all circuit uses two physical phenomena in its computation: its
exponential current function encodes the logarithm of the input, and the finite
conductance of the transistor defines the losing output response. As evolution
exploits all the physical properties of neural devices to optimize system performance,
designers of synthetic neural systems should strive to harness the full potential of
the physics of their media.

11



APPENDIX A
STATIC RESPONSE OF THE WINNER-TAKE-ALL CIRCUIT

Figure 3 in the main text compares data from the two-neuron winner-take-all
circuit with a closed-form theoretical statement describing the losing and crossover
response of the circuit. This appendix derives this theoretical statement.

Figure A1 shows a small-signal circuit model of the two-neuron winner-take-all
circuit (Figure 2 in the main text). For a particular operating point (I}, I, I.,, I..],
the model shows the effect of a small change in I, denoted ¢;, on the circuit voltages
V1, Vs, and V., indicated by the small-signal voltages vy, vs, and v.. In this model,
a linear resistor r;;, in parallel with a linear dependent current source, with a con-
ductance g; ., replaces each transistor T;; from Figure 2. For a particular operating
point in subthreshold, the small-signal parameters are

g1, = NL/V, g2, = Le, Vo ry, =Ve/hh ry, =Ve/I,

Al
12 = I2/Vo g2, = cz/Vo i, = Ve/IZ To, = Ve/Icg’ ( )

where V,, the Early voltage, is a measure of transistor resistance, and V, = kT /qk.
This small-signal model is a linear system, which we can solve analytically using
conventional techniques; applying the approximation V, + V, ~ V, to the solution
yields the simplified equations

u

(1/[1)(V + Ve(Ie,/Ic))
:}; (A42)
== —Ve(1/ ) (I, / ).

" (]

% 1:1 %711 f g1,%¢ T, [P
921 v — vc ? % ? 922 c

Figure A1 Small-signal model of the two-neuron winner-take-all circuit.

-u—fvvvu



Note that both small- and large-signal quantities appear in Equation A2. We
can view the small-signal quantities as differential elements of large-signal quantities;
as a result, we can rewrite Equation A2 as the pair of nonlinear differential equations

% = (1/ L) (Vo + Ve(I.y /I.))
dV; (43)
o = Ve l/B) I/ T).

Solving this pair of nonlinear differential equations yields a complete description of
circuit response. We begin by eliminating I, and I, from the equations. Referring
to Figure 2, the equations

L, = Lexp((Vi = Vc)/Vo)

L, = I, exp((Va — V) /V,) (44)

describe transistors T3, and T3,. From Kirchoff’s current law, we know that I, +
I, = I.; substitution of Equation A4 into this equation yields the expression

I. = I,exp((Vi — Ve)/Vo) + I, exp((Va — V) /V5,). (A5)
Dividing Equation A4 by Equation A5 eliminates V., leaving, after rearrangement,

1

1+ exp((Va — V1)/Vs)
1

YA ey | A AV AR

Icl/Ic =
(46)

These expressions fit nicely into Equation A3, eliminating I, and I.,, and leaving
a set of differential equations involving only V3, V3, and I;:

dvy 1.
—= = (1/5L)(V, + V, ATa
dl; ( / 1)( 0 e(l +exp((V1 _ Vz)/Vo) )) ( )
dV, 1
—= = =V (1/I . ATb
dn 1/ 1)(1 + exp((V2 ——Vl)/Vo)) (A7)
Equation A7a contains V2 only in the subexpression
L (48q)
1+ exp((V1 - Vz)/Vo) ’
and Equation A7b contains V; only in the subexpression
- (A8b)

1 -+ exp((V2 - Vl)/Vo) ’

These subexpressions are both Fermt functions of the difference Vi — V,. For V; —
Va > V,, subexpression A8a is approximately zero, whereas subexpression A8b is

13



approximately one; for V3 — V; > V,, subexpression A8a is approximately one,
whereas subexpression A8b is approximately zero. In the region Vi =~ Vs, we can
assume V7 and V; are both changing with the same magnitude of slope relative
to I;. We can write this approximation as Vi — V2 = 2(V1 — V) and Vo — Vi =~
2(Va — Vi), where, from the qualitative analysis in the main text, V;, = V; = V
when I} = I, = I,,,. We can use this approximation to decouple Equations A7a and
ATb, producing

dv; 1

dI: (l/Il)(V + V, (1 T exp(2(V1 — Vm)/Vo) )) (Ag)
M _v,/m)( : )

I ‘ 1+ exp(2(Va — Vi) /Vo) "

We can solve these equations by straightforward integration, yielding, after appli-
cation of the approximation V, +V, =~ V,,

(L1 /Im) = (Vi = Vin) [Ve + (1/2) In(L + (Vo/V) exp(2(Vi — Vim) /V,))(A10a)
101y /Im) = (Vm — Va) Ve + (1/2)(Ve/Ve) (1 — exp(2(Va — Vin) [V0))-  (A105)

Equation Al0Oa predicts the value of I; for a given value of V;, whereas Equation
A10b predicts the value of I; for a given value of V3; in this way, these equations are
a closed-form approximation of circuit response. To understand the behavior of the
circuit, and to evaluate the effect of the approximations V; — V2 =~ 2(V; — V;;,) and
V2 — V1 = 2(Va — V), we can simplify Equations A10a and A10b for three regions
of interest: V3 = Vo &=V, V1 > V,,, while V3 <« V,,,, and V7 < V},, while V3 > V,,.

First consider the condition V; = V3 ~ V. In this case, |V; —Va| = 0, /I, —
1, and we can linearize the transcendental functions in Equation’s A10a and A10b,
yielding the simpler relations

Vi = (Ve/2)((11/Im) = 1)) + Vim

V2 = (Ve/2)(1 = (I1/Im)) + Vim. (411)

In this region, V; and V; are a linear function of I;, with a slope of +V./(21,).

Next, consider the condition V; > V,, while V3 <« V,,, valid when I; > I,
In Equation A10b, V3 < V,, implies exp(2(V2 — Vin)/V,) — 0. This mmphﬁcatlon
yields, after rearrangement,

Va = V)2 + Vi — Ve In(Iy/Im). (A12)

If we use the notation I; = I, + §é;, as in the earlier qualitative analysis, we can
rewrite the subexpression In(I;/1,,) as In(1 + (6;/I)), which we can approximate
as 6;/I,, for small 6;/1I,,, yielding the simplified result

= Vo/2 + Vm - (Ve/Im)5z’- (A13)

14



Thus, in this region, V; decreases linearly with §;, with a slope of V¢ /I,, which is
twice as large as in the previous condition.

We can similarly derive a simplified expression for Vi, for the same condition
Vi > Vi, while V3 < Vi In Equation Al0Qa, Vi > V,, implies (V,/Ve) exp(2(Vh —
Vm)/V,) > 1. This approximation yields, after rearrangement,

Vi = Vo In(Ii/In) + (Vo/2) (Ve / Vo) + Vim. (A14)

For this condition, as predicted earlier in Equation 2 in the main text, V; is a loga-
rithmic function of I;. However, when does the approximation (V,/V,) exp(2(V; —
Vin)/V,) > 1 hold? This inequality, when rearranged, yields the constraint

(Vi = Vi) > (Vo/2) In(Ve/V,). (A15)

Therefore, for a typical fabrication process, Vi —V,, must be much greater than 0.15
volts for Equation A14 to hold! This error stems from the central approximation
Vi — Vo = 2(V; — V,,), which is valid for only V; — Vo < V,. Thus, for this region of
operation, Equation 2 in the main text best predicts circuit behavior.

Finally, we consider the condition V; « V,,, while V3 > V,,, valid when I; <
I,. In Equation Al0a, Vi < Vy, implies (Vo/Ve) exp(2(Vi — Vin)/V,) — 0. This
simplification yields, after rearrangement,

Vi = Vi + Ve In(Iy / In). (A16)

If we use the notation I) = I,, — §;, as in the earlier analysis, we can rewrite the
subexpression In(I1/I,) as In(1 — (&/In)), which we can approximate as —§;/I,,
for small | — §;/Ip,|, yielding the simplified result

Vi = Vin — (Ve/Im)6;. (A17)

Thus, in this region, V; decreases linearly with 6;, with a slope of V,/I,,. The losing
responses for V; and V3 are thus identical.

We can similarly derive a simplified expression for V3, for the same condition
Vi < Vi while V2 > V). For Equation A10b, V3 > V,, implies exp(2(V; —
Vm)/V,) > 1. This approximation yields, after rearrangement,

In(f/Im) = (Vi — V2)/Ve — (1/2)(Vo/Ve) exp(2(V2 — Vi) /Vs). (A18)

As Vo — V,, increases, the right side of this equation grows exponentially large and
negative, forcing I1 to grow closer and closer to zero; thus, V3 is constant with I.
However, the poor approximation Vo — Vi = 2(Va —V,,) for V3 —V; > V, stunts this
exponential growth. The qualitative analysis in the main text predicts this constant

value accurately, as I
Va=V, ln(}ﬂ) + V, In(
o

I

7) (419)
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In summary, Equations A10a and A10b predict the losing and crossover response
of the circuit, whereas Equations 2 and A19 predict the winning response of the
circuit. Figure 4 is a plot of this analysis, fitted to experimental data. Figure
A2 expands the crossover region of Figure 4, showing the crossover region between
losing and winning analysis. The theoretical predictions in Figure 5 and Figure 7
also use this analysis, with altered values of V.

240 T
V1, V2
v)
2.35 1

2.30T
2.257T

2.207

2.10 + } } t $ 4 + i
0.980 0.985 0.990 0.996 1.000 1.005 1.010 1.015 1.020
n/I;

Figure A2 Experimental data (circles) and theoretical statements (solid lines) for a two-neuron
winner-take-all circuit in the crossover region.
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APPENDIX B
DYNAMIC RESPONSE OF THE WINNER-TAKE-ALL CIRCUIT
In the main text, we presented theoretical predictions of the time response of

the winner-take-all circuit, and compared these predictions with experimental data,
in Figure 9 and 10. In this appendix, we derive these theoretical predictions.

Figure 8 in the main text shows a schematic diagram for a two-neuron winner-
take-all circuit, with capacitances added to model dynamic behavior. Figure Bl
shows a small-signal circuit model for this circuit.

v

1 2
?il %rh s— ¢ fghuc %rlz = C %ghvc

m——
— — (~—
- - -

[

92, (v1 — v¢) ? T2 % =¥ C. %"22 % 92, (v2 — vc)

Figure B1 Small-signal model of the two-neuron winner-take-all circuit, with capacitances added
to model dynamic behavior.

For a particular operating point (I}, Iz, I, I.,], the model shows the effect of a
small change in I, notated ¢;, on the circuit voltages V;,V3, and V., indicated
by the small-signal voltages vi,vy, and v.. In this model, a linear resistor Ti; i
parallel with a linear dependent current source, with a conductance Gi» replaces
each transistor T,-J. from Figure 2. For a particular operating point in subthreshold,
the small-signal parameters are

g1, = Il/Vo g2, = c1/VO ry = Ve/Il T2, = Ve/Icl

B1
g1, = I2/Vo g2, = cz/Vo iy = Ve/I2 T2, = Ve/Iczﬁ ( )

where V., the Early voltage, is a measure of transistor resistance, and V, = kT /gx.
This small-signal circuit model is a linear system, which we can solve analytically
using conventional techniques. The resulting solution, unfortunately, is a function
of the unsolved large signal I, and I.,. However, for the input conditions I = I,
and I1 = I, + 6;, we can reasonably make the approximations I, =~ I, and I,, ~ 0
for relatively small §;, due to the exponential dependence of T3; and T2 on V; and
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V,. Using these approximations, we can express the small-signal voltages v; and vs
as linear functions of the small-signal input current ¢;, as
(4 _

E ((CcVa/Ic)S + 1)

W~ B Eer )+ )6E/a-n D (B2)
and
a ‘(%) (CV./T)s +1)(s/(a i FS A O EEY (B3)
where
“= Zélve + 26{:V0 (B4)
and b= \/ (zélv) 2C v (CI;;I‘I,—Z) (B5)

If b is an imaginary number, the circuit has complex poles, and exhibits undesirable
ringing behavior. I I, > 4I;(C./C), then b is real, and ringing does not occur.
Figure 9 in the main text compares experimental data with this inequality.

When b is real, the circuit exhibits first-order behavior. We can simplify Equa-
tions B2 and B3, and show that the first-order time constant for V; is CV,/I, and
the first-order time constant for V3 is CV, /I, where I =~ I; = I. Figure 10 in the
main text compares experimental data with these time constants.
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APPENDIX C
REPRESENTING MULTIPLE INTENSITY SCALES

This appendix explains a regime of operation of the winner-take-all circuit that
represents multiple input intensity scales in the output, while still functioning as
an inhibitory circuit.

Consider an N-neuron winner-take-all circuit, with input currents I; > I, >
...> In. As shown in Equation 1 in the main text, the output voltage V; is
Vi = Vo In(2) + v, (),
I, I,
while V; ...V are approximately zero. The output does not represent the input
ordering I3 > I3 > ... > Iy; the largest input wins, and all other inputs lose.
We can operate the circuit in another regime, however, which allows inputs I; ... I}
to win, and inputs Iy, ...IN to lose, where the magnitude of I; is under exter-
nal control. Voltage outputs Vy...V;_; are now binary representations, while V}
maintains a logarithmic encoding of the input current I.

(€1)

In previous analysis in this paper, we used ideal current sources to represent
I ...Iy. In Figure C1, we replace these ideal sources with transistor realizations.

' ' rd
-4[ T31 _4[ T32 —4[ T3N
Iy P Isy o Iny P
vi | 7, vim, — ——- Vi [ Ty

T11 I__—— T12 }_—— TIN l-_
. "Icl oL v]'c2 . "IcN
Ve
I

Figure C1. Winner-take-all circuit, with transistors realizations replacing ideal input current
sources.

Transistors T3, ...T3,, when operating in the subthreshold region, realize ideal
current sources if V33—Vi > 2V,. Recall our input I; > Is > ... > Iy, and consider
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the effect of increasing the value of current source I,. As shown in Equation C1, the
neuron output Vj increases with I.. For large I, transistor T3, is no longer operating
in the subthreshold region. In this case, the equation I, = k'(W/L)(V; —V, — Vr)?
describes T3,, where W and L are the width and length of Ty,, and k' and Vr (the
threshold voltage) are fabrication constants. We can solve for V; for this situation,

i=V, ln(%) + ”—k'(%c/f/—)- + Vop. (02)

If we increase I, further, V; continues to increase. For a sufficiently large I,, V; can
approach Vy;. In this situation, T3, begins to turn off, and no longer acts as an
ideal current source supplying I;. In this case, we can model T3, as an independent
current source, supplying the current I, = k'(W/L)(V34 — V.)?, as shown in Figure
C2.

//

<[ 7, <[ 75,

\
S
\
\
<
\
\

O} Ve —

T L

n, - Vi —

TT
&3
Z

T]_2 }—'— Tl N I———
\ y

'IC2

Figure C2. Winner-take-all circuit, after modeling a saturated neuron with the independent current
source Ig.

To a first approximation, Figure C2 shows a (N — 1) neuron winner-take-all circuit,
with an effective control current of I, — I,.

We can apply this technique to represent multiple input intensity scales. Recall
the input condition I; > I, > ... > Iy, and the desired behavior of outputs:
Vi...Vi_1 to be binary on, Vi to maintain a logarithmic encoding of the input
current I, and all other output voltages to be approximately zero. To produce
this behavior, we simply increase I, until V;...Vi_; are approximately V4, but
Vi < Vgg.
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